Enhanced pathogenicity of diabetogenic T cells escaping a non-MHC gene-controlled near death experience.

نویسندگان

  • Caroline-Morgane Choisy-Rossi
  • Thomas M Holl
  • Melissa A Pierce
  • Harold D Chapman
  • David V Serreze
چکیده

For unknown reasons, the common MHC class I variants encoded by the H2g7 haplotype (Kd, Db) aberrantly elicit autoreactive CD8 T cell responses essential to type 1 diabetes development when expressed in NOD mice, but not other strains. In this study, we show that interactive non-MHC genes allow a NOD-derived diabetogenic CD8 T cell clonotype (AI4) to be negatively selected at far greater efficiency in C57BL/6 mice congenically expressing H2g7 (B6.H2g7). However, the few AI4 T cells escaping negative selection in B6.H2g7 mice are exported from the thymus more efficiently, and are more functionally aggressive than those of NOD origin. This provides mechanistic insight to previous findings that resistant mouse strains carry some genes conferring greater diabetes susceptibility than the corresponding NOD allele. In the B6.H2g7 stock, non-MHC gene-controlled elevations in TCR expression are associated with both enhanced negative selection of diabetogenic CD8 T cells and increased aggressiveness of those escaping this process. An implication of this finding is that the same phenotype, in this case relatively high TCR expression levels, could have double-edged sword effects, contributing to type 1 diabetes resistance at one level of T cell development, but at another actually promoting pathogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Slc11a1 Enhances the Autoimmune Diabetogenic T-Cell Response by Altering Processing and Presentation of Pancreatic Islet Antigens

OBJECTIVE Efforts to map non-major histocompatibility complex (MHC) genes causing type 1 diabetes in NOD mice identified Slc11a1, formerly Nramp1, as the leading candidate gene in the Idd5.2 region. Slc11a1 is a membrane transporter of bivalent cations that is expressed in late endosomes and lysosomes of macrophages and dendritic cells (DCs). Because DCs are antigen-presenting cells (APCs) know...

متن کامل

CD40 on NOD CD4 T cells contributes to their activation and pathogenicity.

Our goals in this study were to investigate conditions under which T cells from NOD mice express CD40 and to determine how CD40 on autoreactive CD4 T cells contributes to their pathogenicity in T1D. Using CD40-positive diabetogenic T cell clones and CD4 T cells from NOD mice, we examined expression of CD40 upon activation through the TCR and costimulation through either CD28 or CD40. Our result...

متن کامل

Idd9/11 Genetic Locus Regulates Diabetogenic Activity of CD4 T-Cells in Nonobese Diabetic (NOD) Mice

OBJECTIVE Although the H2(g7) major histocompatibility complex (MHC) provides the primary pathogenic component, the development of T-cell-mediated autoimmune type 1 diabetes in NOD mice also requires contributions from other susceptibility (Idd) genes. Despite sharing the H2(g7) MHC, the closely NOD-related NOR strain remains type 1 diabetes resistant because of contributions of protective Idd5...

متن کامل

Genetic control of diabetes and insulitis in the nonobese diabetic (NOD) mouse

Genetic analysis of the development of diabetes and insulitis has been performed in the nonobese diabetic (NOD) mouse strain, a model of insulin-dependent (type I) diabetes mellitus. (NOD X C57BL/10)F1, F2, and (F1 X NOD) first-, second-, and third-backcross generations were studied. The data obtained were consistent with the hypothesis that diabetes is controlled by at least three functionally...

متن کامل

Autoimmune syndromes in major histocompatibility complex (MHC) congenic strains of nonobese diabetic (NOD) mice. The NOD MHC is dominant for insulitis and cyclophosphamide-induced diabetes

The development of autoimmune diabetes in the nonobese diabetic (NOD) mouse is controlled by multiple genes. At least one diabetogenic gene is linked to the major histocompatibility complex (MHC) of the NOD and is most likely represented by the two genes encoding the alpha and beta chains of the unique NOD class II molecule. Three other diabetogenic loci have recently been identified in the NOD...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 173 6  شماره 

صفحات  -

تاریخ انتشار 2004